
Appendix A

A.1 Auxiliary programs
A.1.1 Reading the thesaurus file roget.dat

The function readRoget() reads the file roget.dat according to the given format, in
order to build a data structure for a thesaurus (see Section 8.3).

void readRoget(std::vector<std::string>& Words,

std::vector<std::list<int> >& lists) {

std::ifstream Source("roget.dat");

assert(Source); // let’s play it safe!

const int maxbuf = 200;

char buf[maxbuf];

char c;

size_t i;

while(Source.get(c)) {

if(c == ’*’) // skip line
Source.ignore(1000,’\n’);

else

if(std::isdigit(c)) {

Source.putback(c);

Source >> i; // current no.
Source.getline(buf, maxbuf, ’:’); // word
Words[--i] = buf;

// read line numbers if present,
// ignoring backslash:
while(Source.peek() != ’\n’) {

int j;

Source >> j;



266 APPENDIX

lists[i].push_front(--j);

if(Source.peek() == ’\\’)

Source.ignore(1000,’\n’);

}

}

}

}

A.1.2 Reading a graph file
The ReadGraph() function is used to read a file for constructing a graph according
to the format described on page 243. The graph has only an identifier of type string
for the vertices. The edge parameters can be of any numeric type or of type Empty
(see page 236).

#ifndef GR_INPUT_H

#define GR_INPUT_H

#include<string>

#include<cctype>

#include<graph.h>

#include<fstream>

#include<iostream>

namespace br_stl {

template<class EdgeParamType>

void ReadGraph(Graph<std::string,EdgeParamType>& G,

const char *Filename) {

std::ifstream Source;

Source.open(Filename);

if (!Source) { // error check
std::cerr << "Cannot open "

<< Filename << "!\n";

exit(-1);

}

while(Source) {

char c;

std::string vertex, VertexSuccessor;

Source.get(c);

if(isalnum(c)) {

Source.putback(c);

Source >> vertex;

G.insert(vertex);

// collect successor now, if present
bool SuccessorExists = false;



AUXILIARY PROGRAMS 267

Source >> c;

if(c == ’<’)

SuccessorExists = true;

else

Source.putback(c);

while(SuccessorExists) {

Source >> VertexSuccessor;

if(!isalnum(VertexSuccessor[0]))

break; // illegal character

EdgeParamType Par;

Source >> Par; // read parameters
G.insert(vertex, VertexSuccessor, Par);

}

}

else // skip line
while(Source && c != ’\n’) Source.get(c);

}

}

} // namespace br_stl
#endif

A.1.3 Creation of vertices with random coordinates
The functions of the following sections can be found in the file gra_util.h. The pre-
lims are:

#ifndef GRAPH_UTILITIES_H

#define GRAPH_UTILITIES_H

#include<place.h>

#include<graph.h>

#include<fstream>

#include<myrandom.h>

#include<string>

#include<iostream>

namespace br_stl {

During automatic creation of an undirected graph, a name must be generated
for each vertex. The following auxiliary function converts the current number into a
string object which is entered as identifier.

// auxiliary function for generating strings out of numbers
std::string i2string(unsigned int i) {

if(i==0) return std::string("0");



268 APPENDIX

char buf[] = "0000000000000000";

char *pos = buf + sizeof(buf) -1; // point to end

do

*--pos = i % 10 + ’0’;

while(i /=10);

return std::string(pos);

}

The function create_vertex_set() creates a number of vertices with ran-
dom coordinates between 0 and maxX or maxY in a graph G according to its size
(G.size()).

template<class EdgeType>

void create_vertex_set(Graph<Place, EdgeType>& G,

int count, int maxX, int maxY) {

Random xRandom(maxX),

yRandom(maxY);

// create vertices with random coordinates
int i = -1;

while(++i < count)

G.insert(Place(xRandom(), yRandom(),i2string(i)));

}

A.1.4 Connecting neighboring vertices
This function connects neighboring vertices. Two places i and j are considered
neighbors if there is no place located nearer to the mid-point between these two
places than the two places themselves.

This definition of neighborhood is certainly arbitrary. It has the advantage that
no place remains unconnected. Predefining a maximum distance between two places
as a neighborhood criterion has the disadvantage that a point located slightly out of
the way might not be connected.

The above definition resembles the definition of neighborhood used in graph
theory for triangulation of a graph (Delaunay triangulation, see Knuth (1994)).
The Delaunay triangulation postulates that there exists an interval on the mid-
perpendicular between two places starting from which any point is nearer to these
two places than to any other place. Usually, the mid-point of the two places lies
inside this interval, but this is not mandatory.

We will not discuss the Delaunay triangulation algorithm because it is consid-
erably more complicated than the algorithm presented here. Furthermore, we need
only to connect neighboring places, not to subdivide the graph into triangles.

template<class EdgeType>

void connectNeighbors(Graph<Place, EdgeType>& G) {

for(size_t i = 0; i < G.size(); ++i) {

Place iPlace = G[i].first;



AUXILIARY PROGRAMS 269

for(int j = i+1; j < G.size(); ++j) {

Place jPlace = G[j].first;

Place MidPoint((iPlace.X()+jPlace.X())/2,

(iPlace.Y()+jPlace.Y())/2);

/*The following loop is not run time optimized. A possible optimization
could be to sort the places by their x-coordinates so that only a small
relevant range must be searched. The relevant range results from the fact
that the places to be compared must lie inside a circle around the mid-
point whose diameter is equal to the distance between the places i and j.

*/

size_t k = 0;

long int e2 = DistSquare(iPlace, MidPoint);

while(k < G.size()) { // not run time optimized
if(k != j && k != i &&

DistSquare(G[k].first, MidPoint) < e2)

break;

++k;

}

if(k == G.size()) { // no nearer place found
EdgeType dist = Distance(iPlace, jPlace);

G.connectVertices(i, j, dist);

}

}

}

}

A.1.5 Creating a LATEX file
Creation of a figure of a directed graph as a LATEX file is carried out by the following
function. The image size is defined by xMax and yMax. The scaling factor increases
or decreases the scaling of the image.

// Only for undirected graphs!
template<class EdgeType>

void createTeXfile(const char * Filename,

Graph<Place, EdgeType>& G,

double ScalingFactor,

int xMax, int yMax) {

assert(!G.isDirected());

std::ofstream Output(Filename);

if(!Output) {

std::cerr << Filename << " cannot be opened!\n";



270 APPENDIX

exit(1);

}

Output << "%% This is a generated file!\n"

<< "\\unitlength 1.00mm\n"

<< "\\begin{picture}("

<< xMax << ’,’

<< yMax << ")\n";

for(size_t iv = 0; iv < G.size(); ++iv) {

// point
Output << "\\put("

<< G[iv].first.X()*ScalingFactor

<< ’,’

<< G[iv].first.Y()*ScalingFactor

<< "){\\circle*{1.0}}\n";

// name of node
Output << "\\put("

<< (1.0 + G[iv].first.X()*ScalingFactor)

<< ’,’

<< G[iv].first.Y()*ScalingFactor

<< "){\\makebox(0,0)[lb]{{\\tiny "

<< G[iv].first // name
<< "}}}\n";

/*All edges are drawn. To prevent them from appearing twice in the undirected
graph, they are drawn only in the direction of the greater index.

*/

typename

Graph<Place,EdgeType>::Successor::const_iterator

I = G[iv].second.begin();

while(I != G[iv].second.end()) {

size_t n = (*I).first;

if(n > iv) { // otherwise ignore
double x1,x2,y1,y2,dx,dy;

x1 = G[iv].first.X()*ScalingFactor;

y1 = G[iv].first.Y()*ScalingFactor;

x2 = G[n].first.X()*ScalingFactor;

y2 = G[n].first.Y()*ScalingFactor;

dx = x2-x1;

dy = y2-y1;

double dist = std::sqrt(dx*dx+dy*dy);

int wdh = int(5*dist);

dx = dx/wdh;

dy = dy/wdh;



SOURCES AND COMMENTS 271

Output << "\\multiput("

<< x1 << "," << y1 << ")("

<< dx << "," << dy << "){"

<< wdh

<< "}{\\circle*{0.1}}\n";

}

++I;

}

}

Output << "\\end{picture}\n";

}

#endif // GraphUtilities

In the sample programs there is also a similar function createMPfile() which
generates output for MetaPost which then can be converted to PostScript. The print
quality is much better.

A.2 Sources and comments
The Silicon Graphics implementation of the STL can be obtained via

http://www.sgi.com/Technology/STL

This implementation is not only part of SGI’s compiler, but also used in GNU
C++. Commercial variations are supplied by several vendors. Besides the source
code, the above Internet address also contains the corresponding documentation and
other interesting links. The documentation can be freely used, provided that the
copyright notice (see http://www.sgi.com/Technology/STL) is included. The
examples from this book can be found under

http://www.ubreymann.de/stlbe.html and
http://www.informatik.hs-bremen.de/~brey/stlbe.html

The thesaurus file roget.dat and other interesting files and programs dealt with in
Knuth (1994) are contained in the Stanford graphBase, whose files can be obtained
via FTP from ftp.labrea.stanford.edu. Under this address, look for directory
sgb.

A.3 Solutions to selected exercises
This section contains a selection of solutions which should be considered as sugges-
tions. Often, several solutions exist, even though only one (or none) may be indi-
cated.

Chapter 1

1.1 For clearness, the singly-linked list class slist is shown in its entirety. T is the
placeholder for the data type of a list element.



272 APPENDIX

Recommendation: After having learned to build class slist, put it aside and use
only the standard class list. It has the same (and more) functions, and it is stan-tip
dardized.

Supplements to slist (compared to page 1.4) are:

erase()

clear()

empty()

size()

iterator::operator==()

iterator::operator!=()

copy constructor, destructor, assignment operator.

// k1/a4/slist.h : list template for singly-linked lists
// T is a placeholder for the data type of a list element.
#ifndef SIMPLELIST_H

#define SIMPLELIST_H SIMPLELIST_H

#include<cassert>

#include<iterator>

namespace br_stl {

template<class T>

class slist {

public:

/*Some types of the class get public names. Then it is possible to use them outside
the class without knowing the implementation.

*/
typedef T value_type;

typedef ptrdiff_t difference_type;

typedef T* pointer;

typedef T& reference;

// see also text

slist() : firstElement(0), Count(0) {}

~slist() { clear();}

slist(const slist& sl)

: firstElement(0), Count(0){

if(!sl.empty()) {

iterator I = sl.begin();

push_front(*I++);

ListElement *last = firstElement;

while(I != sl.end()) {

// insert elements at the end to preserve the ordering



SOLUTIONS TO SELECTED EXERCISES 273

last->Next = new ListElement(*I++, 0);

last = last->Next;

++Count;

}

}

}

slist& operator=(const slist& sl) {

slist temp(sl);

// swap mgmt.info. swap() see chapter 5
std::swap(temp.firstElement, firstElement);

std::swap(temp.Count, Count);

return *this;

}

bool empty() const { return Count == 0;}

size_t size() const { return Count;}

/*The implementation of push_front() creates a new list element and inserts it at
the beginning of the list:

*/

void push_front(const T& Datum) { // insert at beginning
firstElement = new ListElement(Datum, firstElement);

++Count;

}

private:

struct ListElement {

T Data;

ListElement *Next;

ListElement(const T& Datum, ListElement* p)

: Data(Datum), Next(p) {}

};

ListElement *firstElement;

size_t Count;

/*The list consists of list elements whose type is defined inside the list class as a
nested public class (struct) ListElement. In a structure, direct access to internal
data is possible, but this is no problem here because the data is located in the
private section of the slist class. Each list element carries the pertinent data, for
example a number, together with a pointer to the next list element. firstElement is
the pointer to the first list element. The class slist provides an iterator type iterator
which is located in the public section since it is to be publicly accessible. An
iterator object stores the current container position in the current attribute. The
methods satisfy the requirements formulated for iterators.

*/

public:



274 APPENDIX

class iterator {

friend class slist;

public:

typedef std::forward_iterator_tag iterator_category;

typedef T value_type;

typedef T* pointer;

typedef T& reference;

typedef size_t size_type;

typedef ptrdiff_t difference_type;

iterator(ListElement* Init = 0)

: current(Init){}

T& operator*() { // dereferencing
return current->Data;

}

const T& operator*() const { // dereferencing
return current->Data;

}

iterator& operator++() { // prefix
if(current) // not yet arrived at the end?

current = current->Next;

return *this;

}

iterator operator++(int) { // postfix
iterator temp = *this;

++*this;

return temp;

}

bool operator==(const iterator& x) const {

return current == x.current;

}

bool operator!=(const iterator& x) const {

return current != x.current;

}

private:

ListElement* current; // pointer to current element
}; // iterator

/*Some methods of the slist class use the iterator class:
*/



SOLUTIONS TO SELECTED EXERCISES 275

iterator begin() const { return iterator(firstElement);}

iterator end() const { return iterator();}

iterator erase(iterator position) {

if(!firstElement) return end(); // empty list
iterator Successor = position;

++Successor;

// look for predecessor
ListElement *toBeDeleted = position.current,

*Predecessor = firstElement;

if(toBeDeleted != firstElement) {

while(Predecessor->Next != toBeDeleted)

Predecessor = Predecessor->Next;

Predecessor->Next = toBeDeleted->Next;

}

else // delete at firstElement
firstElement = toBeDeleted->Next;

delete toBeDeleted;

--Count;

return Successor;

}

void clear() {

while(begin() != end())

erase(begin());

}

};

template<class Iterator>

int operator-(Iterator second, Iterator first) {

// similar to std::distance(first, second);
int count = 0;

/*The difference between the iterators is determined by incrementing first until
the second iterator is reached. Thus, the condition is that first lies not after the
second iterator. In other words: second must be reachable by first by means of
the ++ operator.

*/
while(first != second

&& first != Iterator()) {

++first;

++count;

}

// In case of inequality, second is not reachable by first
assert(first == second);



276 APPENDIX

return count;

}

} // namespace br_stl
#endif // SIMPLELIST_H

Chapter 4

4.1 The best way is to break down the expression step by step, giving temporary
objects auxiliary names. The key k shall be of type Key. First, a pair P is created:

P = make_pair(k, T());

The expression

(*((m.insert(make_pair(k, T()))).first)).second

thus becomes

(*((m.insert(P)).first)).second

Insertion of this pair is carried out only if it does not yet exist. In any case,
insert() returns a pair PIB of type pair<iterator, bool>, so that the expres-
sion is further simplified to:

(*((PIB).first)).second

The first element (first) is an iterator pointing to the existing, maybe just in-
serted, element of type value_type, that is, pair<Key,T>. This iterator will be
called I:

(*I).second

Dereferencing this iterator with operator*() yields a reference to an object of
type pair<Key,T>, of which the second (second) element of type T is now taken.

4.2 No. value_type is a pair, and the constructor for a pair is called.

Chapter 5

5.1 template <class InputIterator1, class InputIterator2>

inline bool equal(InputIterator1 first1,

InputIterator1 last1,

InputIterator2 first2) {

return mismatch(first1, last1, first2).first == last1;

}



SOLUTIONS TO SELECTED EXERCISES 277

5.2 template <class InputIterator1, class InputIterator2,

class BinaryPredicate>

inline bool equal(InputIterator1 first1,

InputIterator1 last1,

InputIterator2 first2,

BinaryPredicate binary_pred) {

return mismatch(first1, last1, first2,

binary_pred).first == last1;

}

5.3 template <class ForwardIterator, class Distance>

void rotate_steps(ForwardIterator first,

ForwardIterator last,

Distance steps) {// > 0 = right, < 0 = left
steps %= (last - first);

if(steps > 0)

steps = last - first - steps;

else

steps = -steps;

rotate(first, first + steps, last);

}

5.4 cout << "\n Stability (relative order) violated "

"for the following value pairs:\n";

vector<double>::iterator stable_Iter1 = stable.begin();

while(stable_Iter1 != stable.end()) {

// search for counterpart in unstable[]

vector<double>::iterator unstable_Iter1 =

find(unstable.begin(), unstable.end(),

*stable_Iter1);

if(unstable_Iter1 != unstable.end()) {

// check all elements following after stable_Iter1 whether they are
// also found in unstable[] after the position unstable_Iter1
// (if not: unstable sorting)
vector<double>::iterator unstable_Iter2,

stable_Iter2 = stable_Iter1;

++stable_Iter2;

++unstable_Iter1;

while(stable_Iter2 != stable.end()) {

unstable_Iter2 =

find(unstable_Iter1, unstable.end(),

*stable_Iter2);



278 APPENDIX

if(unstable_Iter2 == unstable.end()) // not found?
cout << (*stable_Iter1)

<< ’ ’

<< (*stable_Iter2)

<< endl;

++stable_Iter2;

}

}

++stable_Iter1;

}



OVERVIEW OF THE SAMPLE FILES 279

A.4 Overview of the sample files
The internet sources (see section A.2 on page 271) contain pointers to downloadable
files with all the examples in this book. The further directory structure is oriented
by the book’s chapters, with the names corresponding to the section numbers. Thus,
the directory k1/a3.4 belongs to Chapter 1, Section 3.4. Self-explanatory names,
such as k3/list, are also often used. The include directory contains the template
classes of this book together with auxiliary files for adaptation to the conditions of
the compiler used. On the following pages, the sample files are listed together with
the page reference for this book.

A.4.1 Files in the include directory
For simplicity, the files needed in many of the examples and therefore in many di-
rectories have been transferred into the include directory. This directory should be
specified as the first standard include directory.

File Description Page
include/checkvec.h checked vector 196
include/dynpq.h dynamic priority queue 245
include/graph.h graphs 236
include/gra_algo.h algorithms for graphs 254
include/gra_util.h auxiliary functions for graphs 267
include/gr_input.h reading of graph files 266
include/hashfun.h hash address calculation 180
include/hmap.h hash map 172
include/hset.h hash set 181
include/iota.h iota-class 101
include/place.h class for places 252
include/setalgo.h set algorithms 161
include/showseq.h display of sequences 56
include/sparmat.h sparse matrix 214
include/myrandom.h class for random numbers 112

Table A.1: Additions to the include directory.

A.4.2 Files for the introductory examples
See Table A.2.

A.4.3 Files for the standard algorithms
The standard algorithms are described in Chapter 5, therefore no table is given. If
needed, they can be found in the Contents. All files are located in the directory k5.



280 APPENDIX

File Description Page
k1/a3.4/mainc.cpp examples for interplay 6
k1/a3.4/mainstl.cpp of STL elements 6
k1/a3.4/maint1.cpp 7
k1/a3.4/maint2.cpp 8
k1/a4/slist.h singly-linked list 10
k1/a4/mainstl2.cpp example for slist 13
k1/a6/compare.cpp example for comparison objects 23
k2/identify/identif.h class for identifiers 41
k2/identify/identif.cpp implementation of the above 41
k2/identify/main.cpp application for the above 43
k2/istring.cpp istream iterator application 37
k3/iterator/binsert.cpp example for back_insert_iterator 65
k3/iterator/binserter.cpp example for back_inserter()
k3/iterator/finsert.cpp example for 66

front_insert_iterator

k3/iterator/finserter.cpp example for front_inserter()
k3/iterator/insert.cpp example for insert_iterator 67
k3/iterator/inserter.cpp example for inserter()
k3/iterator/iappl.cpp selection of implementation dependent 59

on iterator type
k3/iterator/ityp.cpp determination of iterator type 58
k3/iterator/valdist.cpp determination of value and distance 61

types
k3/list/identif.h see above: k2/identify ... 41
k3/list/identif.cpp see above: k2/identify ... 41
k3/list/main.cpp list of identifiers 52
k3/list/merge.cpp merging of lists 54
k3/list/splice.cpp splicing of lists 56
k3/vector/intvec.cpp example with int vector 49
k3/vector/strvec.cpp example with string vector 51
k4/div_adt.cpp abstract data types stack, deque, priority

queue
71

k4/map1.cpp example for a map 80
k4/setm.cpp example for a set 77

Table A.2: Files for introductory examples (without makefiles and readme-files).

A.4.4 Files for applications and extensions
The files contained in Table A.3 refer to the examples of Chapters 6 to 11. They
usually assume the files of Table A.1.



OVERVIEW OF THE SAMPLE FILES 281

File Description Page
k6/mainset.cpp set algorithms 166
k7/mainseto.cpp overloaded operators for sets 184
k7/maph.cpp map with hash map 180
k8/crossref.cpp cross-reference 186
k8/permidx.cpp permuted index 188
k8/roget.dat thesaurus file 190
k8/thesaur.cpp program for the above 191
k9/a1/strcvec.cpp string vector with index check 197
k9/a2/matmain.cpp example with matrix 200
k9/a2/matrix.h matrix class 198
k9/a2/matrix3d.h three-dimensional matrix 202
k9/a3/divmat.cpp various matrix models 209
k9/a3/matrices.h fixed matrix for different 205

memory models
k9/a4/sparse1.cpp sparse matrix (variation 1) 211
k9/a4/main.cpp example with sparse matrix 212
k9/a4/mattest.cpp run-time measurements 220
k9/a4/readme
k9/a4/stowatch.h stopwatch class
k9/a4/stowatch.cpp implementation of the above
k10/extsort.cpp external sorting 223
k10/extsort.h templates for external sorting 224
k10/extsortq.cpp external sorting with accelerator 228
k10/extsortq.h templates for the above 230
k11/analyse/gra1.dat graph data 243
k11/analyse/gra1u.dat graph data
k11/analyse/gra2.dat graph data 244
k11/analyse/mainint.cpp graph with integer edge weights 244
k11/analyse/empty.cpp graph without edge weights 244
k11/dijkstra/gra2.dat graph data 244
k11/dijkstra/mainplace.cpp shortest paths (1) in a graph (Figure 254

11.8)
k11/dijkstra/mdi.cpp shortest paths (2) in a graph
k11/dynpq/maindpq.cpp application of the dynamic 252

priority queue
k11/toposort/main.cpp topological sorting 260
k11/toposort/topo.dat graph data 259

Table A.3: Files for applications and extensions.


